Example
Consider the following two parametric curves:

$$
\left\{\begin{array} { l }
{ x = 2 - 2 t } \\
{ y = 3 + t ^ { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x=2 t-4 \\
y=t^{2}
\end{array}\right.\right.
$$

Do these curves intersect? If so, where?
Solution attempt

$$
\left\{\begin{array}{l}
2-2 t=2 t-4 \\
3+t^{2}=t^{2}
\end{array}\right.
$$

This hes no solutions...

1! This system solves for a collision rather than an intersection
same place (not necessarily
same place \&same tire same - lime).
Solution

$$
\left\{\begin{aligned}
2-2 t & =2 s-4 \\
3+t^{2} & =s^{2}
\end{aligned}\right.
$$

Rearranging foot eq: $\quad t=3-s$
plug into second: $3+\left(9-6 s+s^{2}\right)=s^{2}$

$$
12-6 s=0
$$

$$
s=2 \text { and } t=1
$$

Check:

$$
\begin{array}{ll}
2-2 t=0 & 2 s-4=0 \\
3+t^{2}=4 & s^{2}=4
\end{array}
$$

$Y_{\text {cs }}$, Ahe cuves bo infersect (8) the point $(0,4)$.
Food for thanght:- How wondd yen faul a point of self-intersection? eg if

Ronk for dalaling $\omega / \sin ^{2} t, \cos ^{2} t$ in integrals:

$$
\begin{aligned}
\cos (2 t) & =\cos ^{2} t-\sin ^{2} t \\
& =1-2 \sin ^{2} t \\
& =2 \cos ^{2} t-1
\end{aligned}
$$

Rearrang: $\cos ^{2} t=\frac{1+\cos (2 t)}{2}$

$$
\sin ^{2} t=\frac{1-\cos (2 t)}{2} .
$$

Some comments on area:

Some comments on arclength

$$
\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

computes the distance traveled by the particle between times $t=a$ and $t=b$.

So, if you want the "total length" of a curve. you should determine what parameter bounds cause the
particle to trace out the curve exactly once.
ex)

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t
\end{aligned}
$$

these bounds make the particle trace out the curve exactly once.
§10.2 51.52: ask for distance traveled
as a function of time t

$$
\int_{0}^{t} \sqrt{((2 \sin u) \cos u)^{2}+\left((2 \cos u)(-\sin u)^{2}\right.} d u
$$

is the distance traveled be tween time 0 and time t for ${ }^{*} 51$, for example.

