Example
Consider the following two parametric curves:

$$\begin{cases} x = 2 - 2t & \text{ following two parametric curves:} \\ y = 2 - 2t & \text{ for } x = 2t - 4 \\ y = 3 + t^2 & \text{ for } y = -t^2 \end{cases}$$
Do these curves intersect? If so, where is solution attempt

$$\int 2 - 2t = 2t - 4 \\ 3 + t^2 = t^2 \end{cases}$$
This has no solutions...

?

A This system solves for a collision
rather than an intersection.
some place (not necessarily time
some time).
Solution
$$\int 2-2t = 2s-4$$

 $3tt^2 = s^2$
Rearranging first eq: $t=3-s$
Plug into second: $3t(9-6s+s^2)=s^2$

12 - 6s = 0s=2 and t=1 $\frac{Check:}{3+t^2} = 4 \qquad 2s-4 = 0 \\ s^2 = 4 \qquad s^2 = 4$ Yes, the curves to intersect @ the point (0,4). Food for thought: How would you find a point of self-intersection? eq. if you had a parametric curve like X

Rink for dealing w/ sin²t, cos²t in integrals: $\cos(2t) = \cos^2 t - \sin^2 t$ = 1 - 2sin²t $= 2\cos^2 t - 1$ $\cos^2 t = \frac{1 + \cos(2t)}{2}$ Rogerrange: $\sin^2 t = \frac{1 - \cos(2t)}{2}$

Some comments on avea:

Some comments on arclength $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ off computes the distance traveled by the particle between times t-a and t=b. t=qt=b So, if you want the 'total length' of 2 curve, you should destermine what parameter bounds cause the

particle to trace out the curve exactly once. x= cost y= sin t ex) t=2m these bounds make the particle trace out the unve exactly once.

\$10.2 51.52: ask for distance traveled as a function of time t $\int (2\sin n)\cos n + ((2\cos n)(-\sin n))^2 dn$ is the distance traveled bartheen time O and time f for#51, for example.